Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.22.20248614

ABSTRACT

BackgroundImmunochromatographic rapid antigen tests (RATs) emerged onto the COVID-19 pandemic testing landscape to aid in the rapid diagnosis of people with suspected SARS-CoV-2 infection. RATs are particularly useful where RT-PCR is not immediately available and symptoms suggestive of a high viral load and infectiousness are assumed. Several lateral flow immunoassays have been authorized for use under EUA and/or the CE mark, presenting varying overall clinical performance data generated by the manufacturer or by independent investigators. To compare the real-world clinical performance of commercially available rapid chromatographic immunoassays intended for the qualitative detection of SARS-CoV-2, we performed a systematic meta-analysis of published data. MethodsWe searched the MEDLINE(R), Embase, BIOSIS and Derwent Drug File (ProQuest)for manufacturer-independent prospective clinical performance studies comparing SARS-CoV-2 RATs and RT-PCR assays. Only studies on lateral flow assays not needing a separate reader for retrieving the result were included, if data were available on viral load, patients symptom status, sample type, and PCR assay used. For better data comparability, recalculation of the studies single performance data confidence intervals using the exact Clopper-Pearson method was applied. ResultsWe could include 19 studies (ten peer-reviewed) presenting detailed clinical performance data on 11,209 samples with 2449 RT-PCR-positives out of study prevalence rates between 1.9-100 % and between 50- 100% symptomatic samples. Four studies directly compared two to three different RATs and 15 studies compared one RAT to RT-PCR. Overall specificity ranged, with one test outlier, between 92.4% (87.4- 95.9) and 100% (99.7-100), and overall clinical sensitivity varied between 28.9% (16.4-44.3) and 98.3% (91.1-99.7), depending on assay, population characteristics, viral load, and symptom status. Sensitivity in high-viral-load samples (cycle threshold [≤]25) showed a considerable heterogeneity among the assays ranging from 66.7% to 100%. ConclusionOnly two RATs offered sufficient manufacturer-independent, real-world performance data supporting use for the detection of current SARS-CoV-2 infection in symptomatic or high-viral-load patient populations. Reliable positive predictive values require testing of symptomatic patients or asymptomatic individuals only in case of a high pre-test probability. If RATs are used for screening of asymptomatic cases in low-prevalence scenarios, a lower positive predictive value of the result has to be considered.


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.01.20180687

ABSTRACT

The true prevalence and population seropositivity of SARS-CoV-2 infection remains unknown, due to the number of asymptomatic infections and limited access to high-performance antibody tests. To control the COVID-19 pandemic it is crucial to understand the true seroprevalence, but not every region has access to extensive centralized PCR and serology testing. Currently available rapid antibody tests lack the accuracy needed for recommendation by health authorities. To fill this gap, we analyzed and validated the clinical performance of a new point-of-care SARS-CoV-2 Rapid Antibody Assay, a chromatographic immunoassay for qualitative detection of IgM/IgG antibodies for use in near-patient settings. Analysis was performed using 42 Anti-SARS-Cov-2 positive (CoV+) and 92 Anti-SARS-Covid-2 negative (CoV-) leftover samples from before December 2019, using the Elecsys(R) Anti-SARS-CoV-2 as the reference assay. Analytical specificity was tested using leftover samples from individuals with symptoms of common cold collected before December 2019. The SARS-CoV-2 Rapid Antibody Test was 100.0% (95% CI 91.59-100.00) sensitive and 96.74% (95% CI 90.77-99.32) specific with an assay failure rate of 0.00%. No cross-reactivity was observed against the common cold panel. Method comparison was additionally conducted by two external laboratories, using 100 CoV+/275 CoV-samples, also comparing whole blood versus plasma matrix. The comparison demonstrated for plasma 96.00% positive/96.36% negative percent agreement with the Elecsys Anti-SARS-CoV-2 and overall 99.20% percent agreement between whole blood and EDTA plasma. The SARS-CoV-2 Rapid Antibody Test demonstrated similar clinical performance to the manufacturer's data and to a centralized automated immunoassay, with no cross-reactivity to common cold panels.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL